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Summary. One-electron density matrices, which are representable in single-center 
s-orbital basis sets, have been investigated with respect to their reconstruction from 
densities. The maximum allowed dimension for reconstruction from a combination 
of position & momentum density dependent properties is only slightly bigger than 
the dimension in the case of position (or momentum) densities only. Since for a 
given one-particle basis of dimension M, the number of one-matrix elements which 
can be determined is also of order M only, while the total number of one-matrix 
elements is of order M 2, it is in general necessary to introduce severe constraints and 
restrictions. The accuracy demands on the data and algorithms increase exponentially 
for linearly increasing size of basis set. 
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1 Introduction 

The many-particle system is completely described by its many-particle density ma- 
trix. Concerning the kinetic and external-potential energies as well as all other one- 
particle properties, the reduced one-particle density matrix (one-matrix) is already 
sufficient. It also allows us to determine the inter-particle interaction energy at the 
Hartree-Fock level of approximation. 

In recent years several efforts have been undertaken to reconstruct the one- 
matrix from experimental data, both by laying the theoretical foundations [1, 2] and 
by performing numerical calculations (e.g. [3, 4]). The achievements are not always 
free from possible criticism 1, and many open questions remain. 

A major problem is the following: Let a finite one-particle Hilbert space of 
dimension M be given, spanned by a basis of position functions (pi(r), {q)i; i = 
1 . . . . .  M}. By a Fourier transformation we obtain the equivalent basis in momentum 

1 For instance, the kinetic bond energy obtained in Ref. [3b] is in error by one order of magnitude and 
is of wrong sign; the basis set used in Ref. [3f] is of single-zeta quality only; in the approach of Ref. 
[3e] a set of theoretical energy calculations is needed in addition. Furthermore it is rather common (see 
e.g. [3a,b,c,f,g]) to impose the idempotency constraint on the one-matrix, what is not advisable if one 
wants to achieve good accuracy [4]. 
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space, {~i( p)}. A basis to represent the one-matrix D consists of the product func- 
tions {cbij(r',r") = q)i(r').qg~(r")} or {~Pij( P', P")  = ~(  P')@j*( P ' )} ,  respectively, 

D ~ ~ [~o,-(r') > d u < ~oj(r")[ = ~ I6,'(P') > du < ~ ' j (P ' ) .  (1) 
ij ij 

Harriman [1] has shown that the matrix elements dij can be determined from 
the (experimentally determined) position density 

~(r) = ~ ~oi(r) dij qg~(r) (2) 
q 

alone, provided the contracted product functions (gij(r) = ¢pi(r)q~;(r) are linearly 
independent. However, Schwarz and Mfiller [5] have shown that this is in general 
not the case for quantum chemically useful basis sets. The results of Morrison [3e] 
indicate that basis set optimization is not very efficient in this respect. Harriman [1] 
also pointed out that the products of harmonic oscillator functions or of spherical 
harmonics are severely linear dependent. 

It has been proposed by Schmider et al. [4] that the one-matrix might be de- 
terminable from the combination of the position density o(r) and the momentum 
density 

~( p) = ~ 6,.( p) du ~,;( p) , (3) 

or from some equivalent set of position & momentum properties. Numerical tests 
[4] have yielded two important results: (i) The restriction to idempotent (i.e. inde- 
pendent particle) density matrices, advocated for in any previous approaches (e.g. 
[3]), is not tolerable if one wants to obtain a reasonably accurate one-matrix which 
reproduces both position and momentum properties. (ii) It is only possible to de- 
termine the di j  if one restricts oneself to a rather small subspace of {~i j}  ~- {ttlij} 
which, however, is already sufficient to generate surprisingly accurate one-matrices. 

We will here investigate numerically, which maximmn possible dimension may 
be expected for a density matrix to be generated from densities. 

2 Theory 

Let us try to determine D ----- (dq) by a least squares procedure from a given set of 
position and momentum densities Q and n (cf. Eq. (2) of Ref. [4c]): 

zx = Io - ~ dij~oi<P~l 2 + Ire - ~ duq*d,212 = Min, (4) 

with the following definition of the norm: 

f 

I f(x)[  2 = J f ( x ) .  f ( x )*  • co(x)dx. (5) 

~o(x) is some weight function, for instance the experimental accuracy of Q and n. 
Setting the derivatives of A with respect to the dij equal to zero, and assuming 
for convenience that all quantities are real, one obtains the following set of linear 
equations: 

}-].{[cpiq~jcpk~pll + I@q+j~k~gl}(2 - aez). d~+ = {l~o,~o/ol + IOdg<}  for all i > j 

~->~ (6) 
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or, in short hand notation, 

the formal solution of which is 

Aij,kl • dkl  = aij ,  (7) 

_ A - 1  dkt -- kl,ij " aij .  (8) 

The one-matrix elements dkl are well defined, if  the matrix A is not singular. If 
only one of the two densities re, 0 is given, then this problem reduces to the question 
of singularity of the four-orbital overlap matrix, e.g. ]@i~oj~ok~ol[, i.e. of the linear 
independence of contracted product functions (oij(r). This had been investigated 
theoretically by Harriman [1] and numerically by Schwarz and Miiller [5]. Here we 
extend this investigation to the combined re, 0 problem Eqs. (6)-(8). 

In practice the experimentally based ~tij [Eqs. (6) and (7)] are contaminated 
with e r r o r s  6aij ,  which results in errors 6dkl of the reconstructed density matrix: 

- A - 1  • 6 a i j .  (9) 6dkt - kl,ij 

The coefficients of a, ti - and of d, d if numerically stable - are typically of the 
order of 1 or smaller. The determination of d from Li will numerically break down, 
if A -1 is nearly singular, i.e. has very large matrix elements. The largest ones are 
of the order of 1/2min, where "].min is the smallest eigenvalue of matrix A, 

A x i  ---- Xi,~i, (10) 

so that 
A-1 = X~-IX+.  

In order to investigate the singularity of A -1, the spectral norm 

(11) 

lg K s p e c t m  1 = lg(2Max/2min) (12) 

in useful [5], where 2Max is the largest eigenvalue of A and lg means logl0. If 
the product functions are orthonormal, lg ~: is zero. The more linear dependent the 
set of product functions is, i.e. the more singular the matrix A -1, the larger is 
lg ~c. The densities 0 and 7z must be given to at least lg x digits, and the numerical 
calculations must be performed with at least lg x digits of accuracy, if dij should be 
determinable from Eqs. (4) or (8), i.e. if  the density matrix should be determinable 
from the densities. For other choices of numerical stability indices than Kspec~l, 
see [8]. 

If the original basis ¢pi(r) is orthonormal, the product functions ebij(r', r " ) ,  or 
equivalently 7*ij(P' ,  p " ) ,  are also orthonormal. They form the basis space g of 
dimension M 2 for the one-matrix (or of dimension M ( M  + 1)/2 if we consider 
real hermitean, i.e. symmetric matrices). The contracted product functions (aij(r) or 
e i j ( p ) ,  however, are non-orthonormal. They (i.e. the position density, or the mo- 
mentum density, resp.) determine the density matrix only in subspaces of ~: ~q3 
or ~ ® ~o, resp., see the Diagram (cf. Harriman [lb]). If  both position & momen- 
tum densities are known simultaneously, the one-matrix is determined in subspace 
~ ® ~ ® £ ° O J V .  The spaces ~®£a ,  ~®£a and ~a®~®5¢@~" are spanned by those 
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Diagram. Vector space ~ of one-matrices. Sub- 
space ~(' contains that part of the one-matrix which 
is equally determined by the position density as 
well as by the momentum density. ~ ~9 ~('(or 
GLp(') is determined by the position density (or, re- 
spectively, the momentum density). ~®.~®~cPO~/" 
is determined by the combination of position & 
momentum densities. S¢{" contains that part of the 
one-matrix which remains undetermined. Compare 
Harriman [lb]. 

linear combinations o f  the ~bij, 7tij and ~ij • qJij, which correspond to orthonormal 
linear combinations o f  the contracted functions ~bij, egj and cbi j ® eij. 

On the basis o f  numerical calculations with harmonic oscillator functions, Harri- 
man [lb] found: For N M one-particle basis orbitals ~p and for ~ M 2 product basis 
functions 4,  only ~ 2M one-matrix elements are determinable from a single density 
function and ~ 4M one-matrix elements from a pair o f  densities, while ~ (M - 1 )2 
and ~ ( M - 2 )  2 coefficients, respectively, for these two cases, remain undetermined. 
This means that, in the case o f  harmonic oscillator functions, a density matrix o f  
dimension N ~ x ~ can be obtained from a density represented by M basis 
functions, and a density matrix o f  dimension 2v/-M x 2v/M from the combination 
o f  position and momentum densities. 

I f  only a finite accuracy 6 o f  the input data and a finite accuracy tc o f  the 
algorithm is given, only subspaces o f  {qbij}, {~lij } or {q~ij @ ~li j}  of  dimension 
dnum(OS),d,um(~P) or dnum(~ ® gs) can be handled numerically, namely the ones 
spanned by linear combinations xi with eigenvalues 2~ > 6 or ~. All other linear 
combinations (i.e. corresponding linear combinations o f  one-matrix elements diy) 
are completely undetermined. 

3 Calculations 

For our test calculations we use an even tempered set o f  one-center s-type Gaussian 
basis functions 

(pi(r) = C/exp( -~ i r  2) i =- 1 , . . . ,M,  (13a) 

~i=½e 'b i  with c ~ = b * * ( - ~ ) ,  (13b) 

Ci is the normalization constant. For this special choice o f  ~i and e, the Fourier- 
transformed basis in momentum space is simply given by 

~tt'(P) ~--- q)M+l--i(P) (14) 

so that position and momentum spaces are represented by the same fimctions. Fur- 
thermore, we choose a constant weight fimction co = 1 for the definition o f  the 
norm [Eq. (5)]. Finally, one may renormalize the contracted product functions 
f f)ij(r) = ( p i ( r ) q ) j ( r )  and g i j ( P )  = ~(P)@(P)  so that (~ijlff)ij) = @ijleij) = 1. 
The A-matrices for {q~}, {~} and {q~ ® ~} were calculated and then diagonalized. 
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Fig.1. lg~c as a function of the basis set parameter b [Eq. (12)] for different sizes of basis sets 
M = 1 to 10: (a) position space (or momentum space); (b) combined position & momentum 
space. See Eqs (12) and (13) 

The computations were performed on a VAX computer with quadruple accuracy 
(about 33 decimal digits). 

The basis set (13) is rather special with respect to three points. First, the eigen- 
value spectra of  our {~0(r)} and {O(p)}  are the same. We note, that the functional 
similarity of  position and momentum functions as in Eq. (14) also occurs for the 
spherical harmonics, which are the appropriate factors in general atomic orbital ba- 
sis sets, or for the harmonic oscillator functions. Second, the basis is o f  one-center 
and s-type, as several ones investigated by Harriman [1]. Such basis sets are use- 
ful for small atoms, and our conclusions are relevant for atoms and the inner core 
shells of  molecules, while molecular valence shells deserve further investigations. 
Preliminary analysis of  more general basis sets [5] have shown that the problems 
of  uniqueness and stability become even more serious. Third, the basis set is of  the 
even tempered kind, which does not seem to pose a serious limitation. 

4 Resul t s  

Numerical results are shown in Fig. 1. The lg t¢ versus b curves for different basis 
sizes M on the fight chart (combined densities fitting) are lower than those on 
the left chart (single density fitting). This means: The determination of  the density 
matrix D from position & momentum densities is numerically better conditioned 
than the determination of  the density matrix from the position (or momentum) 
density alone. 

To give an impression, we present spectral norms of  A-matrices in Fig. 2, where 
statistical errors of  the order of  6 = 10 -7 have been added to the matrix elements. 
The eigenvalues of  an unmodified A-matrix are >_ 0. The eigenvalues of  the modified 
matrix are modified also by the order of  5, i.e. the smaller eigenvalues of  A are 

~_] 
now in the range of  about + 5 to 0 to - 5. That is, the calculated inverse A 
becomes physically meaningless, and simultaneously lg tc becomes imaginary. For 
errors of  ~ 10 -7 this happens already for more than 3 basis functions when fitting 
the density matrix to a single density, and for more than 4 to 5 basis functions 
when fitting to a pair o f  densities. 

This difference in allowed dimensions becomes significant only for larger sizes 
of  basis sets, which require numerical accuracies that are hardly accessible for 
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Fig. 2. Same as Fig. 1, but the A-matrix elements are modified statistically by errors e [ :h l0 -7] .  
For larger M, lg x is no longer real 

experimental densities, lg to, i.e. the necessary accuracy in order to determine the 
one-matrix from the position or the momentum density alone, and from the com- 
bined densities, is shown in Fig. 3 as a function of the size of the basis set. These 
curves were generated for basis set parameter b=3,  which yields reasonably flex- 
ible quantum chemical basis sets. [We note the somewhat oscillatory behavior of 
the results for the combined density fitting, for the special type of basis sets defined. 
by Eq. (13), see also Fig. lb.] 

So, in general one must be content with determining D in a subspace only 
(of dimension dnum) of the full space d ° of dimension M ( M  + 1)/2. Within this 
subspace, D is given by 

2m/l~Max > (~ 
d k /  = E E Xk l ,  m " 2 m  1 . X i j ,  m " a q  , ( 1 5 )  

q m 

where 5 is the managable accuracy, while all contributions to D of the kind 

.~m/.~.Max < ~) 
Adk/  = ~ Xkl, m " Zm, (16) 

m 

with indeterminate numbers Zm, are completely unknown. The 2's are rather evenly 
distributed on a logarithmic scale, with only little clustering and with only slow 
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Fig. 3. lg t¢ as a function o f  basis set size M: ( - - )  
single density case, ( . . . . . .  ) combined position & 
momentum density case. b = 3 
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Fig. 4. Contour lines /~ = 1 ,2 ,3 , . . .  for the dimen- 
sion dnum = #(/x + 1)/2 of  density matrices which 
can be reconstructed from the position or the mo- 
mentum density ( ), and from the combined po- 
sition & momentum density ( . . . . . .  ) within a 
product function space ~ from M one-particle basis 
functions, i f  the accuracy is lg tc digits, see text 

increase of )Cm-1/)~m for increasing 1/).m. So there are in general not just a single 
or a few eigenvalues which are smaller than the accuracy threshold. 

From M basis functions, one obtains M(M + 1 )/2 product functions. We choose 
dnum <_ M(M + 1)/2 linear combinations of them to be used in Eq. (15). They 
correspond to the dnum eigenvectors xi with largest eigenvalues 2i. The required 
accuracy is 5 < ~i//~Max. We represent dnum by g(# + 1)/2 with # _< M. In Fig. 4 
we plot the accuracy parameter lg • = lg(1/5) for different one-particle basis size M 
and given dn,m = #(# + 1)/2. If we use only one kind of density, dnum represents 
the dimensions of space ~ ®  ~,dnum(~ij), which is equal to the dimension of space 

® Ae for our special choice (13) of one-particle basis, d,om(Tij). This dnum is 
represented by the full curves. If we exploit both kinds of densities, dn~m is the 
dimension of space ~ ® ~ G A ° ® JV, dnum(CI)ij G Tij). This dnum is represented by 
the broken curves, which lie below the full ones. 

A rough approximation of dn~m is 

d~um(~ or T )  ~ 1 + 41g ~c. M, (17a) 

dnum(~&~) ~ 1 + ~lg~c- ( M +  1). (17b) 

While the number of independent density matrix elements is of order M 2, namely 
M(M + 1)/2, only a much smaller number of order M can be determined from a set 
of position or/and momentum density observables. The number of density matrix 
elements which can be determined from the combination of position and momentum 
densities is only slightly larger than from one density alone. 

5 Summary 

The most important result of this investigation on one-center s-type basis sets is 
that - although the combination of position and momentum densities improves the 
numerical determinability of density matrices - the general problem is not solved, 
namely that the necessary accuracy of the data increases exponentially in both cases 
with the size of basis set to be used. Without introducing some special constraints, 
only so few basis functions per atomic center are allowed that not more than one 
or at most two electronic shells per atom can be handled. We do not expect that 
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this statement has to be changed if more general basis sets are investigated, which 
are needed for real molecules. 

Different constraints have been proposed in the literature in order to fix those 
linear combinations of dij which are undetermined by the experimental data. The 
idempotency constraint on the density matrix [3a,b,c,f,g] is physically unfounded 
and has been proven unsuitable by numerical calculations [4]. 

Koga et al. [ra] apply a correction factor to a model wave function so that a 
given single density is recovered. (He then calculates other expectation values from 
this experimentally corrected model wavefunction.) This idea can be extended to 
apply a correction factor to a model one-matrix so that both the given momentum 
and position densities (and possibly other selected one-particle expectation values) 
are exactly recovered. Thereby, previous experience with model one-matrices could 
be accounted for. Gadre et al. [6b] have shown how to construct an approximate 
one-matrix from the position density by exploiting density functional experience 
with exchange-correlation functionals. 

Collins [7] has introduced the idea of keeping the entropy of  the density max- 
imal. Finally one should account for the N-representability of the one-matrix, i.e. 
positive definiteness and possibly further restraints on the eigenvalues of the one- 
matrix, as discussed, e.g. in [9] in order to guarantee, for instance, that probabilities 
are positive. In view of Eq. (16) this restraint is, however, not very serious, if 
many degrees of freedom, namely M(M + 1)/2 - #/(# + 1)/2 ones, exist for the 
one-density matrix elements. 

Schmider et al. [4] have successfully introduced the following constraints: a) 
fix the inner core density contribution to theoretical Hartree-Fock values; b) choose 
a one-particle basis for the valence shell which is known from previous SCF and 
CI-experience to be just flexible enough to yield reasonable accuracy in quantum 
chemical calculations; c) represent the valence shell contribution to the density ma- 
trix within a small MCSCF-type space, i.e. search for a small one-particle subspace 
within the given one-particle basis-space to construct g-space which is known - 
from previous CI-experience - to be just big enough to describe the most promi- 
nent many-particle effects reasonably. The number of one-matrix parameters which 
could be determined seems to be of order M. 

Given a one-particle basis of size M, if(r) is represented by a number of coeffi- 
cients of order O(M), and n (p )  is also represented by O(M) coefficients. However 
it is impossible to determine the O(M 2) unknown density matrix elements uniquely 
from the O(M) given density coefficients, i f M  is larger than, say, M = 3. Approx- 
imate density matrices for atoms in molecules and crystals have been determined 
routinely from experimental and theoretical position densities [9-12]. Only a sin- 
gle basis function for any atomic ml-valence shell has been used there, namely 
the highest occupied atomic Hartree-Fock ground state eigenfunctions. The effective 
M(M = 1 or M = 1 to 2) is there so small, that no numerical problems arise. 

For a given accuracy, only O(/z 2) matrix elements can be determined, where 
# was defined above. For a harmonic oscillator basis [lb] /~(~b or 7 ~) ~ v/2M 
and kt(~&~e) ~ 2v/-M. Here the combination of both densities gives an improve- 
ment of v/2 × v~.  However, it is well known, that the higher eigenfimctions of 
a model Hamiltonian (of the harmonic oscillator or of the hydrogenic ion, for in- 
stance) form a very slowly convergent basis for the "perturbed" groundstate of 
the model Hamiltonian, i.e. it is already known beforehand that many matrix ele- 
ments are very small. Better convergent basis sets as for instance the even tempered 
ones used in the present investigation yield ~ ® .~ • &o ® JV'-spaces which are not 
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x/r2 X V~ = 1.4 X 1.4 times as big as the N + £,e-spaces, but only f x f t imes as 

big, where f = ~ d n u m ( C b & T J ) / d n u m ( e b )  ,~  1.2 for reasonable values o f  M and x, 
according to Eqs. (17). In these cases, the combination o f  two densities improves 
the determination o f  the one-matrix only slightly. 
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